
Enhancing Web Services Description and Discovery to
Facilitate Composition

Preeda Rajasekaran, John Miller, Kunal Verma, Amit Sheth

LSDIS Lab, Computer Science Department, University of Georgia, Athens, 30602
{preeda, jam, verma, amit}@cs.uga.edu

Abstract. Web services are in the midst of making the transition from being a
promising technology to being widely used in the industry. However, most ef-
forts to use Web services have been manual, thus slowing down the ever
changing and dynamic businesses of today. In this paper, we contend that
more expressive descriptions of Web services will lead to greater automation
and thus provide more agility to businesses. We present the METEOR-S front-
end tools for source code annotation and semantic Web service description
generation. We also present WSDL-S, a language created for incorporating se-
mantic descriptions in the industry wide accepted WSDL, by extending WSDL
2.0.

1. INTRODUCTION

Adoption of Service Oriented Architecture (SOA) is expected to allow enterprises to
contract-out their non-critical functions. In the new world economy business processes
typically transcend departmental as well as organizational boundaries. Web services
are expected to provide the ideal platform to automate these processes as they allow
integration of disparate platforms and systems. As these processes become more com-
plex, languages like BPEL4WS [1] are required to represent them and control their
execution. Current technology requires hard-coding of the processes, as a result it is
difficult to incorporate the latest and better solutions available during runtime. The
reason for not being able to accommodate new solutions dynamically is the difficulty
in automatically discovering and integrating new services for the processes. To allow
automatic and dynamic composition of business processes, faster and more effective
methods for representing services and suitable means to automatically identify them
are needed.

Though companies are eager for seamless integration solutions, they lack standards
to expose expressive representations of their service. This incurs disadvantages in
terms of failure of being identified by potential clients, unexpected exceptions during
execution and other misinterpretations about the functionality of the service. In this
paper, we suggest means of overcoming this by providing richer descriptions about the
services being offered. To facilitate understanding by any third party, these descrip-
tions are expressed as a standardized conceptualization of the application domain (on-
tology). This is the core concept behind Semantic Web Services (SWS). This paper
discusses the types of semantic content required to describe the functional aspects of a

service, means of incorporating such information into service description and advan-
tages in integration provided by this method in a dynamic environment.

At the lower levels, Semantic Web Services utilize regular Web service technolo-
gies such as SOAP – Simple Object Access Protocol (for messaging) and WSDL -
Web Services Description Language [2] (for service description). At the higher level,
semantic and more expressive descriptions are used to describe the services. In this
paper, we propose mechanisms for augmenting WSDL to provide semantic descrip-
tions and enhancing UDDI-Universal Description Discovery and Integration [3] to
provide semantic discovery. Fig 1 illustrates the SOA architecture adapted to suit the
needs of Semantic Web Services (SWS), which includes Annotated WSDL files, an
Enhanced-UDDI registry and the corresponding API’s in the Service Registry and
Provider.

Fig. 1. SOA Architecture

Service requestors depending on business needs can discover Web services pub-
lished in UDDI Registries. The currently implemented version of UDDI (UDDIv2)
provides search capabilities based on keyword and taxonomy. The search results are
based on match between keywords present in the description of the published services
and the search string. Pure keyword based search fails to retrieve services which are
described using synonyms of the search string. Moreover, singular/plural word forms
used in the service description also affect the search result. Employing wild characters
(e.g. ‘%’) for search helps to increase the recall rate, but necessitates human judgment
to filter out relevant services.

The recall and precision of keyword-based search is unsuitable for automation and
dynamic composition. The main reason being dynamic composition and automation
involves discovering new services at run time by software components without human
interaction. In keyword-based search, when the search results are unsatisfactory, the
user needs to redefine the keyword (to narrow down the search) to more precisely de-
fine the requirement. This requires manual filtering of returned services, to choose the
service, which is in the same context as the service requestors request. To enable au-
tomation of this process we require 1) meaningful description of the service and its pa-
rameters that can be processed automatically by tools and 2) means to process the
context of description by discovery engines. This paper discusses the METEOR-S[4]
(METEOR-Managing End-To-End OpeRations: for web Services) discovery engine,
an improvement over MWSDI [5]. The discovery engine is provided with features to
incorporate search based on syntax (keyword matching) or semantics (meaning) or
both.

Consider the following scenario in the use-case – ‘Dynamic QoS based Supply
Chain’ [6], where a service requestor is searching for a service to ‘return a Quote for a
Hard Drive’ using the keyword ‘getQuote’. A syntax-based search would return all
services with the word ‘getQuote’ in their description/inputs/outputs/operation name.
‘getQuote’ is a generic term and a similar service can be offered by many providers
such as Electronics Dealers, Hardware Manufactures and Whole-Sale Dealers for their
respective businesses. As the context in which ‘getQuote’ is searched for is absent in
syntax based search, we lose precision in our search, and the required service might be
lost amidst large number of returned results. Moreover, in keyword search if the users
employ very specific terms, e.g., ‘getQuoteForComputerHardDrive’, the search results
returned can be empty, as different service providers may follow different naming
conventions for their services. Naming conventions are specific to organizations and
developers and hence cannot be generalized.

While employing semantic search, the requestor is not required to guess the name
of the service being offered, but is required to provide the context in which the service
is used. The search query for ’getQuote’ is annotated with the concept ‘Computer-
Parts:#getHardDriveQuote’. This helps to identify those services offering the required
functionality, though they follow different naming conventions. For example,‘getH-
ardDriveQuoteInformation’ is our required service advertised in UDDI, for obvious
reasons we can see why the above syntax-based search will fail. If this service is anno-
tated with the concept ‘ComputerParts:#getSCSIDriveQuote’ or similar concept, by
employing reasoning methods (subsumption-relations) we can identify this service as a
potential candidate. The reason being ‘ComputerParts:#getHardDriveQuote’ is the di-
rect parent of ‘ComputerParts:#getSCSIDriveQuote’ in the domain ontology and
hence is closely related to the service being searched. Making use of semantics of in-
puts and outputs of operation can further refine the search results. This paper elabo-
rates on the use of such semantic information to enhance discovery of services for
composition.

Currently, companies are starting to make use of e-business process definition stan-
dards such as RosettaNet [7] and ebXML [8] to achieve inter-operability. They are
used to provide standardized representation of service functionalities and message ex-
change formats. Although such standards provide concrete e-business transaction for-
mat, they lack the logical reasoning inherent in ontological representations. To over-
come this issue METEOR-S employs the use of ontologies based on standards like
RosettaNet. The Web Ontology Language (OWL) [9] is used to represent the ontolo-
gies. This approach helps Semantic Web services to incorporate the advantages ex-
tended by e-business standards into its framework.

While the industry focuses on inter-operability issues by means of existing e-busi-
ness standards, academic research on the other hand, has turned its focus towards de-
veloping approaches tailored for better service representation and reasoning. Identify-
ing potential in the research of Semantic Web Services, two committees have been
formed in 2003 to streamline the research ideas in this field. OWL-S [10], WSMO
[11] and METEOR-S are active research initiatives in this direction. While the former
two develop their own solutions to this problem. METEOR-S, developed at the LS-
DIS lab of The University of Georgia aims to resolve this by reinforcing current in-
dustry standards with the power of semantics.

The paper is organized as follows: Section 2 gives an overview about the METE-
OR-S architecture. It discusses the various modules that make up the METEOR-S sys-

tem. The Semantic Web Service Designer module and the output generated by it (an-
notated source code) are discussed in Section 3. The focus of the next section is on the
Semantic Description Generator and WSDL-S - a enhancement of WSDL 2.0 [12].
Sections 5 and 6, elaborate on the Publishing and Discovery modules of the METE-
OR-S framework. Implementation of the front-end of METEOR-S is presented in Sec-
tion 7. Research related to the work presented in this paper is discussed in Section 8.
Section 9 concludes by giving an overview of the contributions of the paper and future
work that can be employed in this direction of research.

2. METEOR-S

The METEOR project at the LSDIS Lab, University of Georgia, focused on workflow
management techniques for transactional workflows [13]. Its follow on project, which
incorporates workflow management for semantic Web services is called METEOR-S.
A key feature in this project is the usage of semantics for the complete lifecycle of se-
mantic Web processes, which represent complex interactions between Semantic Web
Services.

The main stages of creating semantic Web processes have been identified as devel-
opment, annotation, discovery, composition and orchestration. A key research direc-
tion of METEOR-S has been exploring different kinds of semantics, which are present
in these stages. We have identified data, functional, Quality of Service and execution
semantics as different kinds of semantics and are working on formalizing their defini-
tions. A detailed explanation of the underlying conceptual foundation of METEOR-S
is present in [14].

From an architectural point of view, we divide METEOR-S in two main parts – the
front end and the back end. The front end, which is the focus of this paper, covers the
development, annotation and discovery stages. The main components of the front-end
are the 1) Semantic Web Service Designer, 2) Semantic Description Generator, 3)
Publishing Interface and 4) Discovery Engine. The back end of METEOR-S which
covers composition is discussed in [15]

3. Semantic Web Service Designer

The Semantic Web Service Designer of METEOR-S is a GUI to design and develop
Semantic Web Services. Using this tool, interface design of services and incorporation
of semantic description into the service can be developed simultaneously. This is
achieved by means of source code annotations discussed in detail in the next section.
This user interface is being developed as an Eclipse plug-in. It provides the user with
a tree representation of the interface and an ontology browser, the source of semantic
information. The user provides associations between service parameters and ontologi-
cal concepts. An equivalent representation of the associations - annotated source code
is the output of this module.

The semantic description present in the interface of the service, provides the details
which any implementation of interface should satisfy. Complete description about the

semantics of an operation involves semantic description of inputs, outputs, constraints
to be satisfied and exceptions thrown by each operation and the functional description
of the operation.

Fig. 2. METEOR-S Architecture

3.1 Source Code Annotation

The output of the ‘Semantic Web Service Designer’ is the annotated source code. Ora-
cle and C#.NET offers features to add annotations to source code via javadoc com-
ments and inbuilt metatags, respectively. Here we discuss source code annotation with
relation to Java, but in general the source code could be any suitable language such as
C#.NET. We represent annotations in Java, by employing the meta-tag feature of the
new j2sdk, jdk1.5 [16]. These tags have been introduced into the language according
to specifications of JSR 175. A Metadata Facility for Java Programming Language
[17] and JSR 181-Web Services Metadata for Java Platform [18]

Representation of semantic content in the source code is to provide convenience for
developers of Semantic Web Services. The current practices of developing Web ser-
vices start by processing source code. To adhere to the same standard for developing
Semantic Web Services we include annotations at the source code level. A complete
example of annotated source code of an interface is presented in Appendix I. The an-
notation tags and their corresponding semantic significance are discussed next.

@operation Tag - Value of the ‘action’ attribute provides the functional semantics of
the operation
@parameters Tag – It consists of two meta-tags:
@inParam – for input parameters and @outParam –for output parameters. Value of
the ‘type’ attribute is used to refer to the semantic type that closely defines the
input/output parameter. The user needs to ensure semantic and data-type match before
annotating.
@exceptions Tag – It consists of @exception meta-tags. This is to represent multiple
exceptions that be thrown by an operation.
@constraints Tag – It consists of two meta-tags: @pre – for preconditions and @post
– for post-conditions. The value of the ‘condition’ attribute is used to define the con-
straint the operation has to satisfy before (pre)/after(post) the execution of the opera-
tion. Format of the pre and post conditions in the annotated source code is adapted
from Design By Contract [19] of JML [20] (Java Modeling Language). It discusses
various issues to be considered in the representation of pre and post conditions. The
constraints can alternatively be represented using rule languages like SWRL. SWRL
0.6 [21] discusses the built-in features and the syntax of the language. A detailed anal-
ysis and processing of rules to utilize the features offered by SWRL is pending.
@interface Tag - The attributes of the tag provide interface specific annotations.
These attributes are valid for all implementations of the interface. Attributes such as
descriptions can be extended according to provider’s need.
@service Tag - The attributes of the tag serve as service specific annotations. A ser-
vice described by one interface can be implemented by different service providers.
This tag is used to represent provider specific parameters such as ‘location’, ’QoS’
(Quality of Service) and ‘reliability’.

4. Semantic Description Generator

A basic tenet of Web services is that any service requestor, based on the description in
the WSDL files, can invoke them. WSDL provides information about the service such
as the operations present, the expected inputs and outputs for an operation. With our
requirements for richer description we find this information insufficient for user in
METEOR-S. We propose extensions to Web service description in two ways, 1) An-
notated WSDL 1.1 and 2) WSDL-S files. Both these files can be generated from the
annotated source code by the ‘Semantic Description Generator module’.

Annotated WSDL 1.1, is a WSDL 1.1 document with semantic features added to it
via permissible extensibility elements present in the language. The semantic exten-
sions are used within the METEOR-S framework, to enhance discovery and composi-
tion. At the same time, as the generated Annotated WSDL 1.1 file adheres to the cur-

rent industry standard, it can be also used outside the METEOR-S framework by ser-
vice requestors unaware of semantics. This flexibility demonstrates the light-weight
approach of the methodology used.

The features of WSDL-S language and the motivation behind its creation are dis-
cussed in the next section. The third type of file generated by this module is the set of
OWL-S files associated with the annotated source code. As mentioned earlier OWL-S
is another research initiative in the direction of developing Semantic Web Services.
We propose to show the completeness of semantic description in our system by gener-
ating OWL-S files (profile, grounding and partial process model). OWL-S files pro-
vide a more complex representation of the semantic descriptions. By generating the
OWL-S files from the annotated source code we present means of modeling business
processes using a simpler approach.

OWL-S provides semantic information about a service in four files:
1. Profile (.owl) - Describes the functional (input, output, preconditions and effects)

and non-functional aspects of the service.
2. Process (.owl) - Describes the service’s operations and the interaction protocol of

the service.
3. Grounding (.owl) – Provides mapping from abstract (Process model) to concrete

(WSDL) representation.
4. WSDL (.wsdl) file for the service.

These files are required by the DAML-S/OWL-S ‘Web Service Composer’ [22] to
execute DAML-S services. Currently, we have integrated the profile and the ground-
ing with the WSDL descriptions. We are investigating approaches of representing the
interaction protocol of services. One such approach involves the use of timed-automa-
ta based state machines to represent the interaction of services.

4.1 WSDL-S

As discussed, one of the outputs of the semantic description generator is WSDL-S,
which is a semantically enriched WSDL 2.0 document. In this section, we describe the
motivation and features of WSDL-S. One of the central purposes of WSDL is to de-
scribe interfaces (formerly known as port-types) to Web services. In general, service
providers/implementers could use a standard interface, extend a standard interface or
develop their own.

Broadly speaking, an interface contains a set of operations. Each operation has a
signature, which includes an operation name, input, output and exception messages.
These messages have types that are defined using some XML-based schema language.
The schema language that is commonly used is XSD (XML Schema Definition) [23],
although OWL is an alternative. In WSDL 2.0, types are pushed more completely
outside the standard, since types systems are complex to define and there exist at least
two well-accepted type systems in the XML world: XSD and OWL.

A client of a Web service will look to the interface to find out what it will do. This
enables, interface descriptions to help discover candidate Web services. Such descrip-
tions are therefore critical to proper discovery and use of Web services. This makes
adding semantics to interfaces an important task.

In WSDL 2.0, OWL and UML/XMI are possible type systems, along with XSD. In
WSDL-S, the inputs and outputs are expressed using OWL types from the Rosetta Net

Ontology instead on XSD [24]. Round-tripping allows mapping form one type-system
to another and is important for maintaining data integrity when the type systems used
by the providers and requestors are different. Transformation between (language) Java
primitive types and XML-Schema can be achieved by employing some relaxations on
the primitives used. A similar mapping between XML Schema and OWL, OWL and
Java is not a simple issue. Due to the richness of OWL, we may have to employ com-
plex transformations and work-around to switch between these different type systems.
A complete mapping between these different type-systems is an open research issue in
this area.

By employing basic transformation rules WSDL-S can be employed in Web service
composition, where the individual Web services are used in larger Web processes.
With the new WSDL 2.0, WSDL creators are provided features to use an external type
system in their document. This raises many research questions with relation to type
system round-tripping. The most commonly used type systems are OWL and XML
Schema, whereas Web services are developed using languages like C# .NET and Java.
Complex and user defined data-types require the service provider to provide the ap-
propriate transformations/mapping to XSD types. A discussion of mapping OWL to
Java data types is presented in [25].

While annotating, the developer of the service must provide ‘type’ information.
The ‘type’ should match the data-structure and semantic-meaning of the concept it is
used to annotate. If the user is unable to find a suitable type, then the developer can
define their own types as extensions to the existing types. This makes it necessary to
provide transformation rules to map between user defined types and standardized/rec-
ognized types. Simple transformations such as rupees to dollars may be specified in
SWRL.(e.g., Dollar = Rupee * ‘http://www.xmethods.net/sd/2001/ CurrencyEx-
changeService.wsdl getRate USA India‘)

The parameter ‘http://www.xmethods.net/sd/2001/CurrencyExchangeService.wsdl
getRate USA India‘- is used to represent 1) The Web service with operation ‘getRate’
to return the exchange rate required for the transformation and 2) Operation input pa-
rameters (USA and India). More complex transformations may be specified using
XSLT (Extensible Stylesheet Language) transformation. The developer is provided
with the following choices to define the type, 1) Use a type from a recognized ontolo-
gy, 2) Extend such a type and provide at least a downcast operation, or 3) Create their
own type and provide mappings to standardized/recognized types. Without adhering
to these transformation rules, interoperation between partners will be error-prone.

5. Publishing Interface

Once the semantic descriptions are generated they need to be advertised, so that they
are readily accessible by service requestors. UDDI Registries offer support for pub-
lishing service descriptions. However, the current version of UDDI (UDDIv2) offers
little support for exposing semantic information [26]. This has motivated the develop-
ment of Enhanced-UDDI, essentially a layer above UDDI, which is capable of han-
dling semantic data. The upcoming UDDIv3 provides better support to organize the
semantic information.

Enhanced-UDDI is organized so as to decrease search time and increase the preci-
sion of operations like service discovery. The internal organization of UDDI data-
structures are modified to act as place holders of semantic information [27]. The data
structures of UDDIv2 are discussed in detail in [28]. Category Bags in UDDI are a list
of name-value elements, in our implementation we have used the ‘value’ attribute to
be the place holder of semantic content. In METEOR-S binding templates holds Loca-
tion and Domain specific T-models. This enables direct search of services that func-
tion in a particular Geographic Location and Domain.

The category bag associated with the Business Service, serves as a placeholder for
the operation /inputs /outputs /exceptions /constraints oriented semantics. Service spe-
cific semantic information is stored in the Binding Template, which falls under Busi-
ness Service. This abstraction of data helps to organize the information for effective
retrieval during discovery. An advertisement built from the annotated source code se-
mantic descriptions serves as the input to the Publishing interface. The discovery En-
gine employs a query similar to the advertisement to find the information from the En-
hanced-UDDI1.

6. Discovery Engine

As shown in Fig 2, both the front-end and back-end require the use of the Discovery
Engine module. Currently, discovery in UDDIv2 supports keyword and taxonomical
based search. As mentioned earlier this is insufficient in a dynamic/automated envi-
ronment. In METEOR-S, the discovery method is based primarily on the semantic de-
scriptions and constraints advertised by the service provider. While supporting the
current keyword-match on Web services description, the Discovery Engine improves
upon this by employing heuristics based on subsumption-relations, data-type matching
between requestor specified constraints and provider-advertised concepts, common
ancestor, properties and subclass match between concepts. Inferencing can be em-
ployed on the constraints published by the service provider to filter the results of dis-
covery. This reasoning helps to deal with the constantly changing needs of a dynamic
environment.

A query template is used to construct the query that specifies the functional aspects
of the required service. The query template consists of specifics about a service such
as operation name, operation action (functional semantics), input/output name and (se-
mantic) type, exception, pre/post conditions, domain, location. Such a query may be
generated by automated tools or built manually by users. The Discovery Engine pro-
cesses the query to discover the appropriate services. The user-query provides the Dis-
covery Engine with the specifications of the user, further annotated with semantic type
information.

The effectiveness of the METEOR-S Discovery Engine is greatly attributed to the
organization of Enhanced-UDDI. The Discovery Engine uses the classes subsump-
tion-relation to compare the ontological concepts specified in the query to those ad-
vertised in the registry. It also engages the use of metrics [30] obtained by comparing

1 An alternative to using a UDDI like registry is to use a service ontology, based on logic. In this way,
logical subsumption can be employed to find appropriate matches during discovery [29].

the properties of the concepts, matching the cardinality and the data type, distance
from the common parent, etc., in ranking the relevant services discovered.

Discovery results returned by the user/tool are ranked according to the degree of
match. Other specifics about a service such as reliability, Quality of Service, etc. can
also be used in deciding the final rank of services returned. Constraints on operation
play an important role in ranking the services. These service parameters descriptions
and constraint analysis are used extensively in composition of business flows. The use
of the METEOR-S Discovery Engine in composition is discussed in detail in [15].

7. Implementation of the System

An overview of the implementation details of the above-discussed modules is present-
ed in this section. The Semantic Web Service Designer (SWS Designer) provides the
interface required to create associations between the various service parameters and
ontological concepts. The Semantic Web service designer represents the service inter-
face in the form of a tree. The input and output parameter nodes are organized under
the corresponding operation nodes. An ontology browser is provided to the user help-
ing them navigate through an ontology and choose the appropriate semantic concept.
Once the basic annotations are generated, the user can view the annotated source code
via a Java editor. Direct editing of the source code is optional if the user is familiar
with the format of the annotations. The color scheme of the Java editor is changed to
highlight the annotations embedded in the source code. A syntax checker for the anno-
tations is employed before the user can save the annotated source code.

The main modules of the Semantic Description Generator are the Document Gener-
ator, Type Converter and Validator. The semantic description generator takes as input
the annotated source code. The annotations are extracted from the source code, by
means of the Annotations API that is incorporated into Java reflection in jdk1.5. De-
pending on the users preference Annotated WSDL1.1 or WSDL-S or OWL-S can be
generated. A table driven document generation approach is adopted for implementa-
tion. The tags associated with WSDL are stored in a table, which are used during doc-
ument generation. This helps in code maintenance and for accommodating possible
changes in tag names.

For Semantic Web services to be successfully invoked, we need system-supported
mappings between the different type systems. The main reason being, service descrip-
tions are available to requestors via WSDL documents and WSDL offers support to
varied type systems. After the service requestor discovers the appropriate WSDL file,
mapping WSDL/XSD data-types to appropriate Java types is essential for successfully
invocation of the service.

Recursive definition of complex data-types is provided in the ‘types’ tag of the
WSDL documents. The execution engine is provided with the same hashtable to per-
form inverse look-up during service execution. Correctness of the generated WSDL
documents is checked with validators. WSDL4J [31] API is used to check the validity
of the generated WSDL code.

The Publishing interface can have two different sources, the annotated WSDL file
or annotated source file. If an annotated source code is provided, an appropriate
WSDL file is generated before the service is actually published in the UDDI. The pub-

lisher builds a service advertisement, which contains all the required semantic infor-
mation of the service. The publisher is equipped to handle (publish) annotated as well
as un-annotated representations of the service.

The discovery engine provides two interfaces for interaction. One User Interface
suited for humans to build the query template and to view the results and an API to be
used by composition tools. The functionality extended by both the interfaces is the
same, but the representation of the former is to suit human interaction. Different crite-
ria for discovery, the relaxation constraints and ranking schemes can be customized
according to the user/tools employing the discovery engine. The discovery engine
when called by a tool such as Execution Engine is customized to perform more strin-
gent matching. This is because automation requires near prefect service match for
seamless execution and the absence of human intervention.

The backend of the METEOR-S framework is dedicated to using the features pro-
vided by the front-end for composition and execution of business processes. The Ab-
stract Process model helps to capture semantic descriptions of the services with the
help of ontologies. Users can also specify local constraints for each service and global
constraints for the complete process. These constraints are based on generic QoS cri-
teria [32] such as cost, availability and reliability as well as any domain specific QoS
criteria that may be relevant. After process specification, Enhanced UDDI is used to
get candidate services for all the service templates in the process. [33] gives an
overview of how the semantic descriptions can help in resolving inter-service depen-
dencies based on domain constraints captured in ontologies. The modules of the back-
end are explained in [15].

8. Related Work

In this paper, we have presented an approach to attach semantic descriptions to ser-
vices at design time, through source code annotations. We have also discussed the
changes needed to incorporate these descriptions into standards like WSDL and ser-
vice registries like UDDI, to enhance discovery. This section presents ongoing re-
search related to the work presented in this paper.

[26] and [30] describe the methods to semantically enhance UDDI to support ser-
vice descriptions. An approach to define the functionality of a Web service as the
transformation of inputs to outputs is discussed in [26]. MWSDI [5] presents the use
of service templates to discover suitable services during composition of business flow.

Our discussion on the Semantic Description Generator gave an overview of how
our work is closely related to OWL-S. OWL-S defines a approach to enable Semantic
Web services. We believe that our approach is more lightweight and easier to apply.
We have developed tools to generate OWL-S files from WSDL-S file. Our approach
tries to adhere to the current standards while trying to maximize semantic representa-
tions required for automation. The other research initiative in this area is based on the
work done in WSMF (Web Services Modeling Framework) [34]. WSMO (Web Ser-
vices Modeling Ontology) is developed to encompass the different aspects of Web
service Development. It aims to solve the interoperability issue by means of mediators
and goals (pre and post conditions) described using F-logic statements. The complexi-
ty of F-logic can serve as a disadvantage to users who are unfamiliar with rule lan-

guages. Our approach involves representing constraints as boolean expression in an-
notated source code and converting the same to SWRL rules in WSDL-S documents.
The former representation enables the developers to easily understand the constraints,
while the later is used for logical querying using inference engines.

9. Conclusion and Future Work

In this paper, we have presented an approach, which allows software developers to in-
corporate semantic descriptions of Web services during code development. This ap-
proach leverages the annotation mechanism provided by the Java programming lan-
guage. We have verified our ideas by implementing a Semantic Web Service designer
for source code annotation and Semantic Description generator for generation of rich
descriptions of Web services. In addition, we present the WSDL-S language, which
has been created by extending WSDL 2.0. This work has been done as part of the ME-
TEOR-S project at the University of Georgia. We have endeavored to add more ex-
pressivity to Web service descriptions, while staying close to well accepted industry
standards.

Future work in this area will involve deciding the annotations required in the other
phases of Web service development like protocol specification, transaction manage-
ment, security, etc. Capturing the behavioral aspects (process modeling) of Web ser-
vices is also a part of future work. A validation framework to simulate and validate e
composed workflows will be developed as a part of METEOR-S.

References:

1. Specification: Business Process Execution Language for Web Services Version
1.1http://www-106.ibm.com/developerworks/library/ws-bpel/

2. Web Services Description Language (WSDL) 1.1, W3C Note 15 March 2001-
http://www.w3.org/TR/2001/NOTE-wsdl-20010315

3. UDDI Version2 Specifications-http://www.oasis-open.org/committees/uddi-spec/ doc/tc-
specs.htm #uddiv2

4. METEOR-S:Semantic Web Services and Processes, http://swp.semanticweb.org, 2002.
5. Verma, K., Sivashanmugam, K., Sheth, A., Patil, A., Oundhakar, S. and Miller, J:, METE-

OR–S WSDI: A Scalable Infrastructure of Registries for Semantic Publication and Discov-
ery of Web Services, Journal of Information Technology and Management (to appear),
(2004).

6. Verma, K., Sheth, A., Miller, J., Aggarwal, R.: Dynamic QoS based Supply Chain, Semantic
Web Services Initiative Architecture Committee (SWSA),Use Case, April 2004.

7. RosettaNet – Lingua Franca for e-Business , http://www.rosettanet.org/ RosettaNet/ Rooms/
DisplayPages/LayoutInitial

8. Core Component Dictionary, ebXML Core Components, 10 May 2001, Version 1.04,
www.ebxml.org/ specs/ccDICT.pdf

9. OWL Web Ontology Language Overview- http://www.w3.org/TR/2004/REC-owl-features-
20040210/

10. The DAML Services Coalition, DAML-S: Web Service Description for the Semantic Web,
The First International Semantic Web Conference -ISWC, Italy.

11. Roman, D., Keller, U., Lausen, H.: WSMO – Web Service Modeling Ontology (WSMO),
DERI Working Draft 14 February 2004, http://www.wsmo.org/ 2004/d2/v0.1/20040214/

12. Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language-
http://www.w3.org/TR/2003/WD-wsdl20-20031110/

13. Sheth, A., Kochut, K., Miller, J., Worah, D., Das, S., Lin, C., Palaniswami, D., Lynch, J.,
Shvchenko, I.: Supporting State-wide Immunization Tracking using Multi-Paradign Work-
flowTechnology, Proceedings of the 22nd Intl. Conf. on Very Large Databases (VLDB96)
September 1996.

14. Semantic Web Process Lifecycle: Role of Semantics in Annotation, Discovery, Composi-
tion and Orchestration, Invited Talk, WWW 2003 Workshop on E-Services and the Seman-
tic Web, Budapest, Hungary, May 20, 2003.

15. Aggarwal, R., Verma, K., Sheth, A., Miller, J., Milnor, W.: Constraint Driven Web Service
Composition in METEOR-S (submitted to 2004 IEEE International Conference on Services
Computing).

16. jdk 1.5 Java Development Kit- http://java.sun.com/j2se/1.5.0/index.jsp
17. JSR 175 Java Specification Requests - http://www.jcp.org/en/jsr/detail?id=175
18. JSR 181 Java Specification Requests, http://www.jcp.org/en/jsr/detail?id=181.
19. Jézéquel, J. and Meyer, B. Design by Contract: The Lessons of Ariane. IEEE Computer, 30

(1), 129-130.
20. Design by Contract with JML, 2004.
21. SWRL: A Semantic Web Rule Language Combining OWL and RuleML, Draft Version 0.6

of 23 March 2004 http://www.daml.org/rules/proposal
22. Sirin, E., Hendler, J., Parsia, B.: Semi-automatic Composition of Web Services using Se-

mantic Descriptions, Web Services: Modeling, Architecture and Infrastructure workshop in
conjunction with ICEIS2003, April 2003 (pp –17-24).

23. XML Schema Part 0: Primer http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/
24. Rajasekaran, P., Miller, J., Verma, K., Azami, M., Sheth, A.: Cost-Benefit Analysis of

Adding Semantics to Web Service Description (in preparation).
25. Kalyanpur, A., Pastor, D., Battle, S., Padget, J.: Automatic mapping of OWL ontologies

into Java - http://www.mindswap.org/aditkal/www2004_ OWL2Java. pdf.
26. Paolucci, M., Kawamura, T., Payne, T., Sycara, K.: Semantic Matching of Web Ser-

vices Capabilities. Proceedings of the ISWC 2002, First International Semantic
Web Conference, Sardinia, Italy, June 2002. Springer

27. Paolucci, M. and Kawamura, T. and Payne, T., Sycara, K.: Importing the Semantic Web in
UDDI. Proceedings of Web Services, E-Business and Semantic Web Workshop, CAiSE
2002 (pp 225-236).

28. UDDI Data structure reference-http://www.hpmiddleware.com /downloads/pdf/Web_ser-
vices_datastructure_v1.pdf

29. Sycara, K., Paolucci, M., Ankolekar, A., Srinivasan: Automated discovery, interaction and
composition of Semantic Web services, Web Semantics: Science, Services and Agents on
the World Web, Dec 2003, (vol: 1,no. 1, pp. 27-46).

30. Akkiraju, R., Goodwin, R., Doshi, P., Roeder, S.: A Method For Semantically Enhancing
the Service Discovery Capabilities of UDDI, In Proceedings of the Workshop on Informa-
tion Integration on the Web, IJCAI 2003, Mexico, Aug 9-10, 2003.

31. WSDL4J Project,http://www-124.ibm.com/developerworks/projects/wsdl4j/
32. Cardoso, J., Sheth, A., Miller, J., Arnold, J., and Kochut, K.: Quality of Service for Work-

flows and Web Service Processes, Journal of Web Semantics April 2004, (vol. 1,no.3, pp
281-308).

33. Verma, K., Akkiraju, R., Goodwin, R., Doshi, P., Lee, J.: On Accommodating Inter Service
Dependencies in Web Process Flow Composition, AAAI Spring Symposium on Semantic
Web Services, (pp 37-43).

34. Web Services Modeling Framework Electronic Commerce: Research and Applications,
(2002) 113-137-http://www.wsmo.org/papers/publications/wsmf.paper.pdf

APPENDIX I - Annotated Source Code (Java)

import java.lang.annotation.*;
import java.lang.reflect.*;

@namespaces ({ @namespace (name = "rosetta", service_extension = true,
 url = " http://lsdis.cs.uga.edu/projects/meteor-s/wsdl-s/pips.owl ") })

 @interface (domain = "naics:Computer and Electronic Product Manufacturing" ,
 description = "Computer PowerSupply Battery Buy Quote Order Status ",

 businessService ="Computer Parts Supplier")

public interface BatterySupplier {
 @operation (name = "getQuote", action = "rosetta:#RequestQuote")

 @parameters ({
 @inParam (name = "qRequest", element = "rosetta: #QuoteRequest"),
 @outParam (name = "quote", element = "rosetta: #QuoteConfirmation")
 })
QuoteConfirmation getQuote (QuoteRequest qRequest);

 @operation (name = "placeOrder", action = "rosetta: #RequestPurchaseOrder")
 @parameters ({
 @inParam (name = "order", element = "rosetta: #PurchaseOrderRequest"),
 @outParam (name = "orderConfirmation", element ="rosetta: #PurchaseOrderConfirma-

tion")
 })
 @exceptions ({
 @exception (element = "rosetta:#DiscountinuedItemException")
 })
 @constraint({
 @pre(condition = "order.PurchaseOrder.PurchaseOrderLineItem.RequestedQuantity > 7")
 })
}//end of class

